Gully erosion susceptibility mapping (GESM) using machine learning methods optimized by the multi‑collinearity analysis and K-fold cross-validation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accuracy Assessment of Gully Erosion Susceptibility Map Using SVM and MARS Methods in Shazand Watershed

Gully erosion found to be typical erosion form in semiarid and arid landscape. Because of the importance of this phenomenon, various studies have been conducted around the world to assess gully erosion and its effects. The purpose of this research was accuracy assessment of gully erosion susceptibility maps using SVM and MARS models in the Shazand watershed. Acquiring information about the gull...

متن کامل

The 'K' in K-fold Cross Validation

The K-fold Cross Validation (KCV) technique is one of the most used approaches by practitioners for model selection and error estimation of classifiers. The KCV consists in splitting a dataset into k subsets; then, iteratively, some of them are used to learn the model, while the others are exploited to assess its performance. However, in spite of the KCV success, only practical rule-of-thumb me...

متن کامل

Long-term Streamflow Forecasting by Adaptive Neuro-Fuzzy Inference System Using K-fold Cross-validation: (Case Study: Taleghan Basin, Iran)

Streamflow forecasting has an important role in water resource management (e.g. flood control, drought management, reservoir design, etc.). In this paper, the application of Adaptive Neuro Fuzzy Inference System (ANFIS) is used for long-term streamflow forecasting (monthly, seasonal) and moreover, cross-validation method (K-fold) is investigated to evaluate test-training data in the model.Then,...

متن کامل

A K-fold Averaging Cross-validation Procedure.

Cross-validation type of methods have been widely used to facilitate model estimation and variable selection. In this work, we suggest a new K-fold cross validation procedure to select a candidate 'optimal' model from each hold-out fold and average the K candidate 'optimal' models to obtain the ultimate model. Due to the averaging effect, the variance of the proposed estimates can be significan...

متن کامل

Dust source mapping using satellite imagery and machine learning models

Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geomatics, Natural Hazards and Risk

سال: 2020

ISSN: 1947-5705,1947-5713

DOI: 10.1080/19475705.2020.1810138